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Narrowband Noise

Channel Model Consider a linear, time-invariant channel whose transfer function,
H(f), is identically zero outside a band of frequencies of total width 2W around a
centre frequency fc :

H(f) ≡ 0 if |f − fc | > W.

As usual, we assume that fc > 2W. The channel impulse response, h(t)
F
® H(f),

is hence a narrowband function of bandwidth 2W and centre frequency fc . We will
assume that the channel is noisy; namely, that any signal transmitted through the
channel will be corrupted by a random interference, or noise.

Noise Model We will consider channel noise to be additive. In particular, if s(t) de-
notes a transmitted signal, then the received signal will be of the form

r(t) =
(
s(t) + nw (t)

)
? h(t) = s(t) ? h(t) + nw (t) ? h(t)

=

∫∞

−∞
s(t − τ)h(τ) dτ +

∫∞

−∞
nw (t − τ)h(τ)dτ,

where nw (t) is an additive random noise process generated in the channel. We will as-
sume that nw (t) is a zero mean, stationary, white Gaussian process with power spectral
density Snw (f) = N0/2.∗ In addition we assume that the channel noise process nw (t)
is independent of the signal s(t).†

The additive white noise nw (t) generated in the bandlimited communication chan-
nel results in a noise process, N(t) = nw (t) ? h(t), which additively contaminates the
received signal. Clearly, N(t) is wide sense stationary, zero mean process with power
spectral density

SN (f) = N0

2

∣∣H(f)
∣∣2 .

As the channel is narrowband, SN (f) is also narrowband with bandwidth 2W and centre
frequency fc . We hence refer to N(t) as a narrowband process.

∗Whiteness is a reasonable assumption for certain natural noise sources—a classical instance is the
white noise you see on a TV screen; this is not, however, a good assumption for man made clutter,
intelligent jammers, etc. In cases where the noise is not white, common terminology refers to the noise as
coloured.

The zero mean assumption is not particularly confining for additive noise processes. If the process has
a nonzero mean µ , then the receiver sees an additive noise component whose mean is µH (0). Clearly,
this additive mean noise component can be subtracted away resulting in a zero mean noise process.
The Gaussian assumption is also standard, though harder to justify. It does make the analysis of noise
substantially easier, and one can loosely support it by appealing vaguely to the Central Limit Theorem.

†The additive, signal-independent noise assumption is common, and fits channels like the atmosphere
rather well. You should be cognisant, however, that there are situations in practice where one or both
assumptions are invalid. In particular, there are instances where multiplicative (and other nonadditive
models) better describe the noisy interference, and situations where the noise may be signal-dependent.
An example where a nonadditive, signal-dependent noise model is appropriate is in characterising noise
in certain classes of photographically generated images. Another example of nonadditive noise arises in
quantisation e ects in digital modulation schemes such as pulse code modulation.
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Representation Just as in the representation of bandlimited signals, we can use an
in-phase and quadrature representation or an envelope and phase representation to
characterise the bandpass process N(t) in terms of lowpass processes,

N(t) =

{
NI(t) cos(2πfct) − NQ (t) sin(2πfct) (in-phase and quadrature representation),

R(t) cos
[
2πfct + Ψ(t)

]
(envelope and phase representation),

where, in analogy with the representation for deterministic narrowband functions,
NI(t) and NQ (t) represent the in-phase and quadrature components, respectively, of
the noise process, and R(t) and Ψ(t) represent the corresponding envelope and phase
processes. As usual, these lowpass processes are obtained from the bandpass process
N(t) by frequency shifting and lowpass filtering. Write

hL(t) = 2W sinc(2Wt)
F
® HL(f) = rect

(
f

2W

)

for the impulse response and transfer function of an ideal lowpass filter with band-
width W. Here, in standard notation, we identify the Fourier pairs

sinc(t) =

{
1 if t = 0,
sin(πt )

πt if t 6= 0,

F
® rect(f) =

{
1 if |f| < 1/2,

0 if |f| ≥ 1/2.

It is easy to verify that

sinc(t) =

∫∞

−∞
rect(f)ej2πft df,

so that

rect(f) =

∫∞

−∞
sinc(t)e−j2πft dt,

as well, by the uniqueness of the Fourier transform. The in-phase and quadrature
components and the envelope and phase processes of the noise process N(t) are then
given by

NI(t) = +2
[
N(t) cos(2πfct)

]
? hL(t) (in-phase component),

NQ (t) = −2
[
N(t) sin(2πfct)

]
? hL (t) (quadrature component),

R(t) =
√

N2
I (t) + N2

Q (t) (envelope process),

Ψ(t) = arctan

[
NQ (t)

NI(t)

]
(phase process).

What can we say about the joint statistics of the processes NI(t) and NQ (t), or, equiv-
alently, R(t) and Ψ(t)?

Properties To begin with, observe that N(t) is a zero mean, stationary, Gaussian pro-
cess. (Why?)

Property 1 The in-phase and quadrature components,NI(t) and NQ(t), are zero mean,
jointly Gaussian random processes. Why?
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Property 2 The processesNI(t) and NQ (t) are jointly stationary.

Proof: Let’s begin by showing that the in-phase and quadrature noise processes are
individually stationary. Consider the process NI(t) first. It su ces to show NI(t) is
wide sense stationary. (Why?) Even though we are passing the noise process through
a linear (low-pass) filter, we cannot directly claim that (wide sense) stationarity is pre-
served because of the multiplying factor cos(2πfct). (In fact, N(t) cos(2πfct) is not wide
sense stationary. Verify.) We have

E
[
NI(t + τ)NI(t)

]

= 4

∫∫∞

−∞
E
[
N(t + τ − x)N(t − y)

]
cos

(
2πfc(t + τ − x)

)
cos

(
2πfc(t − y)

)
hL(x)hL(y)dx dy

= 2

∫∫∞

−∞
RN (τ−x+y)

[
cos

(
2πfc(τ−x+y)

)
+cos

(
2πfc(2t+τ−x−y)

)]
hL(x)hL(y)dxdy.

With the coordinate transformations x − y = u, x + y = v, we obtain

E
[
NI(t + τ)NI(t)

]

=

A︷ ︸︸ ︷∫∫∞

−∞
RN (τ − u) cos

(
2πfc(τ − u)

)
hL

(
v+u

2

)
hL

(
v−u

2

)
dv du

+

∫∫∞

−∞
RN(τ − u) cos

(
2πfc(2t + τ − v)

)
hL

(
v+u

2

)
hL

(
v−u

2

)
dv du

︸ ︷︷ ︸
B

. (∗)

The first integral yields a result depending purely on the shift τ. For wide sense sta-
tionarity it hence su ces to show that the second integral evaluates to a quantity
independent of t. Integrating along the v-variable first gives

∫∞

−∞
hL

(
v+u

2

)
hL

(
v−u

2

)
cos

(
2πfc (v − 2t − τ)

)
dv

= 2

∫∞

−∞
hL

(
ω + u

2

)
hL

(
ω − u

2

)
cos

(
2πfc(2ω − 2t − τ)

)
dω

= 2 Re

{
ej2πf c (2t+τ)

∫∞

−∞
hL

(
ω + u

2

)
hL

(
ω − u

2

)
e−j2π (2fc )ω dω

}

= 2 Re

{
ej2πf c (2t+τ)

∫∞

−∞
HL(f)ejπfu HL(2fc − f) e−jπ(2fc −f)u df

}

= 2 Re

{
ej2πf c (2t+τ−u)

∫∞

−∞
rect

(
f

2W

)
rect

(
2fc −f
2W

)
ej2πfu df

}
,

where the penultimate step follows by noting that the ω-integral is simply the Fourier
transform of shifted products of hL evaluated at a “frequency” 2fc . For fc > W there is
no overlap of the two rect functions, and the integral is identically zero for each value
of u. (The particular choices of t and τ also do not a ect this.) Hence, B ≡ 0.

It follows that E
[
NI(t + τ)NI(t)

]
= A = RNI (τ) so that NI(t) is wide sense station-

ary, hence stationary vide Property 1. A similar argument serves for NQ (t).
To complete the proof of the assertion we need to show that NI(t) and NQ(t)

are jointly stationary. Again, it su ces to show that NI(t) and NQ(t) are jointly wide
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sense stationary. (Why?) In particular, it su ces to show that NI(t) and NQ(t + τ) are
uncorrelated random variables for any choice of t and τ. (Why?) Proceeding as before,
in analogy with (∗), it is not di cult to obtain the expression

E
[
NQ (t + τ)NI(t)

]

=

C︷ ︸︸ ︷
−

∫∫∞

−∞
RN(−u + τ) sin

(
2πfc(τ − u)

)
hL

(
v+u

2

)
hL

(
v−u

2

)
dvdu

+

∫∫∞

−∞
RN (−u + τ) sin

(
2πfc(2t + τ − v)

)
hL

(
v+u

2

)
hL

(
v−u

2

)
dvdu

︸ ︷︷ ︸
D

. (∗∗)

By reasoning similar to that for the B-integral in (∗) we can demonstrate that D ≡ 0.
Observe that C depends only on τ and not on t. Consequently, the cross-correlation
E
[
NQ (t + τ)NI(t)

]
= C = RNQ NI (τ) depends only on τ and not on t so that we have

shown that the processes NI(t) and NQ (t) are jointly wide sense stationary.

Property 3 The processesNI(t) and NQ (t) are lowpass (with spectral bandwidthW),
and have the same power spectral density

SNI (f) = SNQ (f) =
[
SN (f − fc) + SN (f + fc)

]
rect

(
f

2W

)
.

Proof: Let’s evaluate A in (∗) explicitly. We have

RNI
(τ) =

∫∞

−∞

(∫∞

−∞
hL

(
v+u

2

)
hL

(
v−u

2

)
dv

)

︸ ︷︷ ︸
P(u)

RN (τ − u) cos
(
2πfc(τ − u)

)
du

Evaluating the inner integral first, we have

P(u) = 2

∫∞

−∞
hL (z)hL (z − u)dz (substitute z = (u + v)/2)

= 2

∫∞

−∞
hL (z)h(u − z)dz (as hL(z) = 2W sinc(2Wz) is even)

= 2

∫∞

−∞
H2

L(f)ej2πfu df (Fourier convolution relation)

= 2

∫∞

−∞
HL(f)ej2πfu df (as H2

L (f) = HL(f) = rect(f/2W))

= 2hL(u) (inverse Fourier transform). (∗ ∗ ∗)

It follows that

RNI (τ) = 2

∫∞

−∞
hL(u)RN (τ − u) cos

(
2πfc(τ − u)

)
du.

We recognise the right-hand side as the convolution of hL(τ) with RN (τ) cos(2πfcτ). It
follows that the power spectral density SNI (f) is the product of HL(f) with the Fourier
transform F

{
RN(τ) cos(2πfcτ)

}
. Hence,

SNI
(f) = 2HL (f)

[
SN (f) ?

{
δ(f−fc )+δ(f+fc )

2

}]
= rect

(
f

2W

)[
SN (f − fc) + SN (f + fc)

]
.
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An identical derivation yields the same result for SNQ
(f).

Property 4 The noise processesN(t), NI(t), and NQ (t) all have the same power: Why?

Var NI(t) = Var NQ (t) = Var N(t) , σ2
N .

Let us introduce some terminology: say that SN (f) is locally symmetric about±fc

if

SN (fc + f) = SN (fc − f) and SN(−fc + f) = SN (−fc − f) for 0 ≤ f ≤ W.

Property 5 If SN (f) is locally symmetric about±fc , then NI(t) and NQ(t) are indepen-
dent processes.

Proof: Let’s evaluate C in (∗∗) explicitly (recall that D = 0). Evaluating the v-integral
first using (∗∗∗), we obtain the following expression for the cross-correlation function:

RNQ NI (τ) = −2

∫∞

−∞
hL(u)RN (τ − u) sin

(
2πfc(τ − u)

)
du.‡

Looking at the Fourier transform of RNQ NI
(τ), i.e., the cross-spectral density, SNQ NI

(f),
we obtain

SNQ NI (f) = F
{
RNQ NI (τ)

}
= j rect

(
f

2W

)[
SN (f − fc) − SN (f + fc)

]
.§

Now, power spectral densities are symmetric, so that SN (fc − f) = SN (f − fc); the local
symmetry of SN (f) hence yields SN (fc + f) = SN (f − fc ). It follows that SNQ NI (f) ≡ 0,
whence RNQ NI (τ) = F−1

{
SNQ NI (f)

}
= 0. As NI(t) and NQ (t) are zero mean, it follows

that

0 = E
[
NQ(t + τ)NI(t)

]
= E

[
NQ (t + τ)

]
E
[
NI(t)

]
= 0.

As t and τ are arbitrary, NQ (t) and NI(t) are uncorrelated processes.

The next property concerns the distributions of the envelope and phase noise
processes, R(t) and Ψ(t), respectively.

Property 6 If SN(f) is locally symmetric about±fc , then, for every t, the random vari-
ables R(t) and Ψ(t) are independent. The marginal distributions are moreover indepen-
dent of t with R(t) possessing a Rayleigh distribution,

pR(r) =

{
r

σ2
N

e−r2 /2σ2
N , if r ≥ 0,

0, if r < 0,

while Ψ(t) is uniform on [0, 2π),

pΨ(ψ ) =

{
1

2π , if 0 ≤ ψ < 2π,

0, otherwise.

‡Note that the cross-correlation exhibits skew-symmetry, RN Q N I
(τ) = −RN I N Q

(τ), i.e., the cross-
correlation is an odd function of τ , as a consequence of the fact that sin is an odd function while RN and
hL are even functions.

§ Note that the cross-spectral density has no power interpretation; hence, is not required to be real,
nonnegative.
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Remark: Observe that we write simply pR(r) and pΨ (ψ ) instead of pR(t)(r) and pΨ(t)(ψ ),
respectively, as the marginal densities do not depend on t.

Proof: Under the given conditions, NI(t) and NQ(t) are jointly Gaussian, indepen-
dent, and have the same variance σ2

N ; consequently, their joint pdf is

pNI ,NQ (x, y) = 1
2πσ 2

N

e−(x2 +y2 )/2σ2
N .

Consider the joint distribution function

FR,Ψ (r, ψ ) = P
{
0 ≤ R(t) ≤ r, 0 ≤ Ψ(t) ≤ ψ

}

= P

{
0 ≤

√
N2

I (t) + N2
Q (t) ≤ r, 0 ≤ arctan

(
NQ(t)

NI(t)

)
≤ ψ

}

=

∫∫
1

2πσ 2
N

e−(x2 +y2 )/2σ 2
N dx dy,

where the double integral ranges over the sector
{

(x, y) : 0 ≤
√

x2 + y2 ≤ r, 0 ≤ arctan
(

y
x

)
≤ ψ

}

in the circle of radius r in the two-dimensional Cartesian plane. With the usual Carte-
sian to polar transformation ρ =

√
x2 + y2 , φ = arctan(y/x), we have

FR,Ψ (r, ψ ) =

∫ r

ρ=0

∫ ψ

φ=0

1
2πσ 2

N

e−ρ2 /2σ2
N ρdφdρ = ψ

2π

[
1 − e−r2 /2σ2

N
]

for every choice of 0 ≤ r < ∞ and 0 ≤ ψ < 2π . (While the above holds, strictly speaking,
only for the first quadrant, by symmetry we can extend it for all ψ in [0, 2π).)

The marginal distribution functions of R(t) and Ψ(t) can be obtained by setting
extreme values, ψ = 2π, and r = +∞, respectively, in FR,Ψ (r, ψ ):

FR(r) = FR,Ψ (r, ψ )
∣∣
ψ =2π

= 1 − e−r2 /2σ 2
N (0 ≤ r < ∞),

FΨ (ψ ) = FR,Ψ (r, ψ )
∣∣
r=+∞ = ψ

2π (0 ≤ ψ < 2π ).

We hence have FR,Ψ (r, ψ ) = FR(r)FΨ (ψ ), so that R(t) and Ψ(t) are independent for
every t.

Di erentiating to obtain the pdf’s we get

pR(r) = d
dr FR(r) =

{
r

σ2
N

e−r2 /2σ 2
N , if r ≥ 0,

0, if r < 0,

pΨ(ψ ) = d
dψ FΨ (ψ ) =

{
1

2π , if 0 ≤ ψ < 2π ,

0, otherwise.

This completes the proof.

Observe that the joint pdf is given by

pR,Ψ (r, ψ ) = pR(r)pΨ (ψ ) =

{
r

2πσ 2
N

e−r2/2σ2
N , if r ≥ 0 and 0 ≤ ψ < 2π ,

0, otherwise,

by independence of R(t) and Ψ(t).
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